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RESUME

On a con?u un modele mathématique de réticule de téte chercheuse
3 modulation d'amplitude et déterminé sa position d'éauilibre stable en
présence d'une cible 3 double points, ou & simple point accompagnée
d'une cible étendue. Le comportement de ce réticule constitue 1'objet
d'une simulation sur ordinateur numérique. (NC)

ABSTRACT

A generic AM-reticle seeker was modelled, and its steady-state
equilibrium position, in the presence of either two point tarcets or a
point and an extended target, determined by digital comnuter
simulation. (U)
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1.0 INTRODUCTION

An infrared seeking missile employs the radiation from the target
as its homing source; its qgimballed seeker head precesses to follow this
source. Although there has been a rapid development of charge-counled
devices suitable for processing target radiation, current threats are
more likely to use mechanical scanning. The mechanical scanners, which
have fields of view of a little more than a degree to several degrees,
are either of the rosette or reticle types. The rosette-type scans with
a very narrow instantaneous field of view, thus permitting the
recognition of individual characteristics. The reticle scanners include
those which provide pulse-position modulation, freauency modulation or
amplitude modulation to encode the angular position of the tarqget
relative to the seeker axis. In this document a seeker employing an
amplitude-modulating (AM) reticle is examined; related reticles are

employed in certain American and Soviet missiles.

With two targets within its field of view, the seeker of a
missile employing an AM reticle has a tendency to point nearer to the
more intense one, a property which is employed to decrease the
effectiveness of the infrared seeking missile; a taraqet can dispense a
decoy flare, which, if it is sufficiently intense, may he accented by
the missile seeker as a preferential source of radiation to the target
itself. Analyses of infrared decoy flare effectiveness require the
determination of the position to which the sceker of the attackinag
missile will point relative to the taroet and flare pasitions. Tn
simplify the calculations, it is often assumed that the seeker will
point to the weighted mean, that is: tha product of imane intensity and

distance from the centre of the reticle will in the steady state be

e e e . et
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equal for the target and the flare. This assumption may be valid when
two infrared sources are far from the missile, and the images on the
reticle are thus small. But it will no longer be true as the missile
approaches the targets, and the imanes occupy a substantial portion of

the reticle.

A model of a generic AM seeker is developed, and its performance
examined for certain specific cases which are tractable by exact
mathematical solutions. As well as introducing the resder to the seeker
behaviour, these examples serve to validate the computer programme. A
digital programme is developed from the model, and employed to determine
the seeker equilibrium in the presence of two point taroets as a
function of target separation and relative target intensities. This is
then extended to include the case where one target is an extended
source. The results may be of assistance in the modelling reaquired for

flare-effectiveness studies.

This report covers the work performed at DREV between 1 October
1979 and 1 August 1980 under PCN 21313, "Multiple Target Tracking with a

Reticle Seeker”.

i

Py
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2.0 ™ODEL
2.1 General

A generalized schematic of an infrared seeker is shown in Fia. 1.
The infrared emission from the tarqget is focussed onto a reticle
spinning about its centre at a freouency of fs. The reticle consists of
alternate opaque and transparent sectors, which chop the incident
radiation to produce a carrier of frequency p.fs at the photocell
output, where p is the number of pairs of opague and transparent
sectors. The chopping efficiency is maximum for an image capable of
being instantaneously masked or unmasked totally; such image can be
either a point or a straight line (or its extension) passino throuah the
centre of the reticle. This waveform is modulated at the spin freauency
by a semi-transparent phasing sector. An automatic gain control (AGC)
keeps the amplitude of the carrier constant and indenendent of the
target intensity, which is a requirement for linear control. This siqgnal
is demodulated and produces quadrature components at the spin freauency,
the amplitudes of which are a measure of the angular error between the
look angle of the seeker and a line to the target. These error signals
are applied, via torauing motors, to nrecess the reticle assemblv to

reduce the error angle to a small value.
2.2 Reticle

The reticle used in this model is shown in Fia. 2. It possesses
twelve pairs of transparent and opaque spokes, and the inner boundaries
of the phasing sector are delimited by semi-circles, centred on opnosite

sides of a diameter of the reticle, the radiuses of which are half that
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FIGURE 1 - Control system
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of the reticle. The phasing sector has a transmission nf 50%, so that
the averaqge signal will be the same during imaae dwell on the phasinn
sector and 1image dwell on the spokes; this will tend to improve
discrimination anainst large images. Harmonic reference signals are
generated at the spin frecuency of the reticle, which rotates in a

clockwise direction at a rate of w_ rad/s.

To illustrate the manner in whic'. the reticle encodino is used ‘o
produce error signals, an example is now aiven in which, for ease of
comprehension, the signal processing 1is greatly simplified. Let the
target image be at a distance r from the centre of the reticle. Then, 14
from the reticle qeometry qiven in Fig. 3, it can be seen that the image ?}
will be interrupted by the phasing sector for an angle of 2 arcsin r(=28)
for each rotation of the reticle. For this narticular figure only, the

image has been rotated around the centre of the stationary reticle.

FIGURE 3 - Reticle geometry
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Suppase that the image is at P(r,v', == shown in Fin, 4(a), which

has been drawn for the instant that the reticle and spatial references
are coincident. The photocell sianal will then he as in Fin. 4a(b)
Reference siqnals (Fig. 4(c)) are generated hy the reticle motor, and
are phased so that the information contained in the photocell siqnal can
be correctly recovered. The photocell signal is rectified (Fig. 4(d))
and, in conjunction with the reference signals, its SINE and COSINE

comnonents are determined.

1 r2m-8-¢y 2m
COSINE — [fws a doy * 2’“ cos o da ] s
" Lo i

+8-v
5
= - %— sin 8 cos ¥ , (1] )
= - 2 r cos ¥
m
where
o= w_t
s
Similarly
SINE = 21 sin v . (2]
The spatial axes are defined such that when ¢ = 7, the imane lies on the
positive X axis, and when ¢ = n/2, it lies on the positive Y axis. It ‘i
is reaquired that, when an error is in the positive direction, the error

signal be also positive. For this to cccur, the error sianals for the

X and Y directions (EX and EY) must be equal to (-COSINE) and SINE

- e ey —

respectively, which requires the use of (-cosine) and sine reference

signals. Henceforth, these will be the reference sianals emnloyed. !
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FIGURE 4 - Waveforms required for example
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As this simplified example demonstrates a linear control it would
be anticipated that the more sophisticated model, which is emnloyed

throughout the remaining analyses, will show a similar tendency.

2.3 Signal Processing

The photocell signal is first filtered. In the model, only the
carrier {(at the spoke frequency) and its immediate side-bands are nassed
by the filter. If the spin frequency is fs’ that of the carrier will be
lZfs (assuming a 12-spoke reticle), and the filter will pass only '
components at llfs, 12f'S and l5fs. In practice, the siagnals from the f
various target images are summed by the photocell, and then filtered. |
As the signal processing to this point is linear, the model achieves the
same result by filtering the signals from the individual images, and f
then summing. Thus the filtered signal from the i'th imaage can be !

represented by

13
S(F.) = ¢ (a.,, sin ja + b.. cos j .
R PR ) ij Ja) (3]
The total filtered signal is then ‘
S(F) = & S(F) . [4]
1

Before this sinnal is detected, some form of autaomatic aain {
control must be applied, otherwise the amplitude of the error sianals ,
will be a function of the imaqe intensities, and linear control wauld (
not be feasible. The type of AGC employed herein, is that of dividing

S{F) by its root-mean-sguare (RMS) value, to give

S(AGC) = S(F)/RMS, [5]
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where
e [le & bg)]i ’ (6]
and aj = i aij ; bj = i bij

This sianal is then square-law detected, and the coefficients of sin 1

and cos a extracted. Let

13
S(AGC) = I (¢, sin jq + d, cos ja) . [7]
o J ]
j=11
Then
SZ(AGC) = EX cos a + EY sin a + higher frequency components, [8]
where
Ex = -legplegy *epg) + dpoldy; +d15))
Ey = ¢ppldyy - dy3) - dpyley; - €5

The ninher frecuency comporents are filtered out, and £y and FY are used
to drive the reticle assemblv, in the X and Y directions resnectivelyv,

via the toroue motors which have a nain of G.

A flowchart of the model is given in Fig. 5.

- o e e g st

If the target image is displaced orly a small distance from the
reticle centre, then sine and cosine approximations can be emnloyed to
simplify the calculations. This will permit 2 further examnle of the

signal »nrocessing to be given, without as vet resortinc to a computer.

In Fig. 6(a) is shown the photocell signal for a taroet imace on the X
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axis at a distance r from the reticle centre, where r is much smaller

than n/p, and p is the number of pairs of sectors (=12).

>l = \
OO NNONne ]
(o)

OO0
|l g
1
(b) - }4

FIGURE 6 - The photocell waveform

The filtered signal then has the following form

{

|

?

|

|

; |
\

S(F) = i:_l[ap+isin(p + i)a + bp+ic°5(p + i)al. [9]

The equation will now be written in the following tabular form
S(F) = (10}
Vi Yo M1

where u, is the coefficient of sin(n + p)a,
and Vi is the coefficient of cos{(n + p)a; n = -1, 0, 1,

and the straight-line brackets are a function

which performs the

following operation
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B
! |
Zu_ sin(n + p) a+ v_cos(n + pla.
g n . n

The waveform of Fig. 6(a) will be analysed hy first separating it into
the two parts shown in Ffig. 6(b). 1t follows that the S(F) for the

photocell signal is " 4

1 - cosl{p - 1)p -2 1 - cos pB 1 - cos(p+1)8
S(F) = -+ (11]
(p - Dnr m p7 (p+ 1«
0 0 0

Assume nr<<l, so that 8 = (arccin r) = r, then ec. 11 can be written

(p -1) r2 -~ 2 p+1 r2
S(F) = 27 T 27 . [12]
0 0 0

Let the target image be displaced from C(x,0), or P(r,0), to C(x,y), or
P(r,v), where

r (x2 + yz)i »

it

¢ = Arctan y/x .

In the model the phase angle is introduced after the filtering, so that

(=D rzcos(p-nw -2 cos py  (p+1) r’ cos(p+l)y
2 " 2 n

S(F) = ) [13]
(éLl) T sin(p-1)¥ -2 sin py  (pr1) r° sin(p+1)y
w L 2

In the case of multiple targets, it is at this point that the S(Fi)

would be summed to form S(F). The RMS value, because r is emall, is

very close to 2/r. Hence
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(p-1) rzcos(p-l)w -cos py (p*1) rzcos(p+1)¢ i

S(AGC) = 4 [14] i
(p-1) rzsin(p—l)w -sin py (p*1) TZSi“(P+1)¢
| :

Equation 14 is substituted in ea. § to give

E, = If. {cos py[(p-1)cos(p-1)¥ + (p+1)cos(p+1)y]
X 4 :
+ sin py [(p-D)sin(p-1)v + (p+1)sin(p+1)¥]} (15] H

=6 rzcosw

—Ef. {cos pv [(p-1)sin(p-1)y - (p*1)sin(p+1)y]

- sin py [(p-Dcos(p-1)y - (p+l)cos(p+1)y]}

=6 rzsinw

It is seen that for small displacements the system has a souare-lew

control.

2.5 Equilibrium Position for Two Targets (Small Displacement)

A further example is now given where two targets are oresent, but
with only a small separation between them. Let the first taroet have an
intensity of wunity and a position at eguilibrium of C(xl,ﬂ), and the
other target an intensity of N and a nosition at ecuilibrium of

C(-x2,0)- Then if pxl(x2)<<1, hy annlyirq ea. 12 to hoth tarnete, the
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filtered photocell sional is

‘ 2 2 2 2
| (peD (x7-Nx35)  -2(N+1)  (p*1) (xT-Nx3)
S(F) = 27 172 ™ 27 172 [17]
0 0 0
for equilibrium Ex must be zero (refer to ea. 8), that is
20N+ D)p(x, % - Nx,3 = 0 [18]
5 LA 2 ’
n
the solution of which is
X
1_ 4
x5 =N [19])

This is to be expected from the sauare-law relationship between the
error signal and the image error (r) derived in Section 2.4. This
position can be seen to be stable, as ea. 18 shows that an increase of
X1 with a consequent decrease in Xo will cause Ex to become positive,
whereas if X becomes negative so does EX' A positive error siqpal will
cause the reticle to move to the right and hence decrease the error (xl)

between the reticle centre and a taraet image 1lying to the right of

centre.

s ibadld S
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2.6 tExtended Target

First consider the case where two tarqets, at the same distance
from the centre, are separated by the width of one sector, as shown in
Fig. 7(a), which has been illustrated to show the instant at which the
reticle and spatial references are coincident. The waveforms resulting
from the two individual images are shown in fig. 7(b), and the total
signal in Fig. 7(c), where v, and Vg are the arquments nf the nositions

of images A and B.

An analysis of the waveform of Fig. 7(c), which is given in
Appendix A, shows that
2n 27

f sin pa + £(A+B) da =./' cos pa + £(A+B) da = 0 . (20]
0

and thus a = b12 = 0; it can be seen, from ea. 8, that because of this

12
the error signal will also be zero. It follows that if the taraet image
was in the form of an arc, covering more than one sector, the carrie-
signals from all points separated by exactly one sector's width would
nullify one another. If the arc was to cover exactly an even number of

sectors, the carrier would be lost, and the error signal would be zero.

The signals from an arc image will now be examined. An  arc is
chosen as an image shape, in preference say to a straight line, only
because of its mathematical simplicity in this introductory analysis.
It suffers from the disadvantage that nothing can be concluded about the
stability of equilibrium positions, as once the image moves it is no

longer an arc with the same centre, and hence the eauations emploved in

the analysis become invalid.

—e— - -

emr————.
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FIGURE 7 - Waveforms from two images
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In Figq. &(a), the target image is shown by a heavy arc from
P(1,~A) to P(1,A). To derive the error sinnals resultinra from this
imace, the filtered siqnal for an image of unit intensity situated at
P(1,0) will first be calculated. Its nphotocell signal 1is shown in

Fig. 8(b), and hence (see also Appendix B)

s(F) = | Y11 Y12 Y13 |, [21]
0 0 0
where :
'
U, = 7.596/11m7,
u12 = -1/mn, r
Uz = 7.596/13n. —
'
If the intensity of the arc is uniform, and its total radiance is unity,

then for a segment at P(1,r) of length &

u,,cos 11x u, . cos 12x ulscos 13x

11 12 :

S(Fgy) = % . . . (22] ;
u1151n 11a u1251n 12) u1351n 13) . ]

!

In the limit 1
|
A ‘ ‘

S(F)=f S(Fg,) as  &xdr»0,

-A
[23]
<Ll % sin 1 Y12 sin 120 Y13 sin 138
K11 12 13
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FIGURE 8 - Extended target
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The carrier amplitude of the arc is
3, ~ (sin 12A)/127mA, (24]

and the sum of the side-band aaplitudes is

S A 2

_ 7.596 sin l1A sin 13A
= ( + 31 5 ) [25]
11 13

These are plotted in Fia. 9. As the peaks of both the carrier and the
sum  of the side-bands decrease rapidly with arc length, their
contribution to the total error signal, in the presence of a npoint

source of similar intensity, will be very small,

e ———

Further, an arc of total length sav m would be in enuilibrium, as
3 the carrier amplitude is then zero. A point imaqe at the centre of the
reticle is also in equilibrium, and eg. 12 shows that this is because
the side-band amplitudes are zero. However, if both the arc and point
images are present at the same time, the seeker is no lonaer in
equilibrium, as the side-bands from the arc and the carrier from the
point will generate an error signal and cause a displacement aof the

seeker.
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3.0 RESULTS
3.1 General

The preceding analyses have served either to illustrate the
functionina of the seeker or to provide a means of validatinn the
computer oprogramme, and as such have investiqated special cases or used
approximations. The rest of the study, which will be aqeneral, will
reauire the wuse of a diaital computer. The simulation model was
programmed in APL, and run on the Xerox 560 digital computer. The

programmes are listed in Appendix C.
3.2 Error Curves

The error curve (Fig. 10(a)) gives the error signal as a furction
of the distance of a point image from the centre of the reticle. It is
to be noted that the curve gives an overall appearance of linearitv, as
was suggested by the reasoning in Section 2.2. The number of neaks on
the curve corresponds to the number of changes of snoke interceptions

with the phasing sector as r varies from 0 to 1.

Fiqure 10(b), which is plotted from the data of Table I, shows

the portion of the error curve for small values of r. In Section 2.4
o4

the error signal was derived as being eaqual to 6r° for values of r less

than 0.08; this verifies that the part of the error curve for small

values of r is correct.
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FIGURE 10 - Error curve
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TABLE |

Error signal for small r

T Ex 6r2
0,01 0.000599 0.0006
0.02 0.00239 0.0024
0.03 0.00536 0.0054
0.04% 0.00946 0.0096
0.05 0.01u47 0.015
0.06 0.0209 0.0216
0.07 0.0281 0.029%%u
0.08 0.0362 0.038u
0.09 0.045 D.0486
0.1 0.05u5 0.06
0.11 0.0646 0.0726
0.12 0,075 0.086u
0.13 0.0857 0.101
0.14 0.0965 0.118
0.15 0.107 0.135
0.16 0.118 0.15u4
0.17 0.128 0.173
0.18 0,137 0.194
0.19 0.146 0.217
0.2 0.154 0.24
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3,3 Equilibrium Position for Two Point Tarqets

In this test, two point target images ere placed at a aiven
distance apart and, after ecuilibrium has been reached, their distances
from the reticle centre are noted. The two imaqges are situated at
C(xl,O) and C(xZ,D), with intensities of 1 and N, The images are a

fixed distance apart (d), where d = X| = Xpe

From Fig. 11 and Table II it can be seen for d = 0.00]1 that

log N lxz/xll = } log N,

or [26]

- N2
]xl/le = N°.
This result is in agreement with ea. 19.

For larger d the value of lez/xll is rinse to unitv, that is
|x1/x2|=N, if neither image is close to the centre of the reticle, so
that a weighted mean can be applied in this case to calculate the
equilibrium position. Once either of the imaaes is close to the reticle
centre, the signals from this image will no lonaer be linearly

proportional to its distance from the centre; nevertheless, the slopes

of the curves for large N remains one half.




r —————
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FIGURE 11 - Two point targets
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TABLE 11 |
! Two point imanes ']
. <
N X X, 1% /%, NIX /%, ]
d = 0.001
1.00 .000590 -.00050 1.00 1.00
1.58% ,00056 -.0004Y 1.26 1.26
2.51 .07261 -.00039 1.58 1.59
3.23 . 00067 -.00023 1.99 2.00 .
6.31 .00072 -,00028 2.51 2.51
10.03 .0076 -.00024 3.16 3.16 )
15.8$ .00080 -.00020 3.98 3.98
25.12 .003383 -,00017 5.01 5.01 .
39.81 .00086 -.00014 6.31 6.31 i
63.10 .00039 -.00011 7.94 7.94 ;
100.00 .00091 -.,00009 10.00 10.090 !
d = 0.4
-1.00 .200 -.200 1.00 1.00
1.26 L2258 -.175% 1.28 .98
- 1.58 . 249 -.151 1.64 .97
2.09 . 269 -.131 2.07 .97
" 2.51 . 285 -.115 2.48 1.01
3.16 .293 -.102 2.92 1.08
3.93 .309 -.091 1.00 3,98 i
5.01 .318 -.082 3.88 1.29 ‘]
6.31 L2325 -.074 .4y 1.42 ‘
10.00 . 340 -.060 5.72 1.75 :
15.85 .352 -.0u8 7.33 2.16 |
25.12 L3581 ~.039 9.231 2.70 |
39.81 . 169 -.031 11.78 3.38 x
63.10 . 375 -.025 15.00 4,21 ‘
100.00 . 330 -.020 18.80 5.32 {
:
d =1.0
1.00 .500 -.520 1.00 1.00
1.26 .578 -.u2u 1.36 .93
1.54 613 -.387 1.59 1.00
2.00 .649 -.35%1 1.85 1.03
2.51 .693 -.307 2.26 1.11
3.16 .781 -.219 3.56 .89
3.93 .817 -.183 u.u45 .89
5.01 .Bu3 -.157 5.37 .93
6.31 .885 -.135% 6.41 .98
10.00 .897 -.103 8.67 1.15
15.85 .919 -.081 11.29 1.40
25.12 . 915 -.065 14.u48 1.73
39.81 . 949 -.051 1R.49 2.15
§3.10 . 959 -.0u41 23.57 2.68
100.00 .953 -.032 30.06 3.33
-«
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3.4 Representation of Line Targets

For various numbers of points forming the line-target imane, the
values of ap;e al2 and as are calculated and presented in Table III and
fig . 12, where the line is 0.8 long and positioned symmetricallv shout
the X axis at x = 0.5. It was concluded from the figure that little

error should occur by employing 21 points.

To verify that this number of points is sufficient to rerresent a
line image anywhere on the X axis, the amplitudes of the carrier and the
sum of the side-band amplitudes were plotted for the same line imace,
and its position along the X axis was varied from -1.0 to 1.0. The
graph is given in Fig. 13 for a line image represented by 21 points and
in Fig. 14 for 41 points. The only discernable difference between the
two curves is in the peaks of the carrier immediately on either side of

the ordinate.

TABLE I11

Number of points to form a line image

Image length = 0.8 (Symmetrical about X axis),

Position of image: x = 0.5 .

e I
1 .1099 ~.5305 .0929

3 .0816 ~.4953 .1065

7 .0232 -.0882 .0113

11 .0219 -.0821 0100

21 .0213 -.0792 0094

31 .021%2 -, 0786 0033

51 .0211 -.0783 L0393
101 0211 - 0782 L0092
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FIGURE 12 - Number of points to represent a line imane
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-.35 y
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FIGURE 13 - Line signals for 21 points

FIGURE 14 - Line signals for 41 points




UNCLASSIFIED
31

3.5 Caquilibrium Position in the Presence of a Line and a_Point Target

The difference between the signals from the representation of a
straight-line image by 21 and 41 points, as shown in Figs. 13 and 14, is
small, and hence the following computations have been done with 21
points; the effect of the difference, if any, will be discussed at the

end of this section.

In Figs. 15(a)-17(a) are shown the values .f a); and as(= a5 +
815) for a point image of intensity N and a line imane of unit intensity
and of length 0.8 centred about the X axis. It is now required to
derive the points of equilibrium from these curves for a aqiven
separation of the two images. The separation will be taken to be 0.5,

with the point image 1lying to the left onf the line imace. for

equilibrium to occur the error sianal must be zero, that is
[a;,(xp) + a;,(x)] [ag(xp) + ag(x)l =0, [27]
where

Xp is the position of the point image,

X is the position of the line imane,

aj(xk) is the value of aj at the point x

K on the k curve,
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i
*

(b

FIGURE 15 - Line and point images;
separation = 0.5, N = 1.0
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.75

-1.0

(b)

FIGURE 16 - Line and point images;
separation = 0.5, N = 0,3
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-1 =
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r
312(xp) LS
- ;
pl
a,0xp)
as(xL)
-1.0

-.015 (b)

FIGURE 17 - Line and point images;
separation = 0.5, N = 0.1
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Thus the equilibrium position can be given by the solutiors of both

alZ(xL - 0.5) + alz(xL) =0,

[28]
a

s(xL - 0.5) + as(xL) =0 .

These enuations could be solved by nlotting the error sigral, and
noting the zero crossings. A positive slope at these nositions would
show stability, as a movement of the reticle centre to the left would be
accompanied by a nositive error signal, which would tend to return the
reticle to its equilibrium position. Although the error signal can be
very easily calculated, the value of RMS is involved, for which apys 2y,
and a3 are required. A more direct approach is to use the data fron
the curves of Figs. 15(a)-17(a), where only the a;,'s and aS's are

given. Let

- 2
Ey = Ey/RMS™ , [29]

'
Then because RMS2 cannot be nenative, £, must have the same zero

X
crossings as EX’ and the signs of the slopes at these nositions must be
the same for CX and [;. Thus, the eauilibrium positions are determined

by plotting EX, where

E; = la,(x, - 0.5) + a,(x)] laglx, - 0.5) + ag(x)] . (30]

In Figs. 15(b), 16(b) and 17(b) this curve is shown for N = 1.0, 0.3 and

0.1 respectively.

It can be seen for N = 1.0 that there is one eaquilibrium
position, that it is stahle, and occurs for x| = 0.43, Xp = -0.07. For

N = 0.3, there are three ecuilibrium nositions, twn of which are stable.

e o e ey =
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For N = 0.1, there are 15 equilibrium positions of which 8 are stahle.
The figures show that if a 4l-noint representation had been emnloved
instead of a 2l-point one, the larger carrier peak to the right of the

ordinate might have caused two more eguilibrium positions to have

occurred at st between 0 and 0.1, for N = 0.3.
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4.6 DISCUSSION

In practice, a small nortion of the centre of the reticle may be
blacked out to prevent oscillation of the seeker when the errnr is
small. This would change the shape of the two point tarqget equilibrium
curves in the region where one of the images enters this zerc

transmission zone.

Multiple statically stable ecuilibrium positions were found under
certain conditions when both a point and a line imagqe were present on
the reticle. Under dynamic conditions some of these positions may not

be stable.

The filters employed extracted the carrier and its immediate
side-bands with no attenuation or phase shift. The simulation model
could be readily adapted to filters requiring attenuation and nhase

shift at particular harmonics.

The only extended target examined was a line. However, areal
targets, such as illustrated in Fig. 18, could be studied, but because
of the large number of points required to define an areal target and the
conseauent large number of computer operations entailed, the programming

would probably have to be performed in a language other than APL.

The reticle employed is the ‘'sunburst' reticle with straight
spokes. Other reticles could be employed with very small chanaes to the

simulation. One such reticle is illustrated in Fig. 19, in which the

spiral spokes improve the spatial filtering.
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FIGURE 18 - Distributed targets

FIGURE 19 - Spiralled reticle
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5.0 CONCLUSION

A simulation model of 2 generic seeker employing an AM reticle
was developed, from which a digital programme was prepared to calculate
the seeker response to various stimuli. It was demonstrated that the
equilibrium position of two point images can be described by a weighted
mean only if the separation and intensity ratio is such that neither
image, at equilibrium, is nearer the reticle centre than 0.1 of the
reticle radius. This occurs because the system is linear except for

images near the centre of the reticle.

It was chewn that, because of phase cancellations, an extended
imaqge contributes less to the error siqgnal than a point of the same
total intensity; hence a weiahted mean cannot be used for determinineo
the equilibrium position of an extended and a point imace. The
programme disclosed that with both a line and a point image nresent on
the reticle, for certain ranges of intensity ratio, there could he many

static equilibrium positions.

The model could be modified to  accommodate the given
characteristics of a particular AM reticle seeker, such as the neometry
of the reticle, the amplitude and phase responses of the carrier filter,
and the design of the automatic qgain control. Areal targets of

specified shapes and gradations in intensity could also be simulated.
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APPENDIX A

Derivation of Equation 20

From Fig. 7

f(B,a) = £(A, a+1/12),

where
a=wt.,.
s

It follows that

2% 2n
f f(B,a)sin 12a da =ff(A,a+n/12)sin 12a da,
0 0

2n
=ff(A,a)sin(12a - 7) da,
0

2n
=-f f(A,a)sin 12a da.
0

Therefore

2m 2n
f f(A+B)sin 12a da f[f(A) + £(B)]sin 12a da
0 0

= 0,

Similarly

2n
,/(.f(A*B)cos 12a da = 0.
0

[Al]

[A2]

[A3]

[A4)
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APPENDIX B

Derivation of the Constant in Equation 21

from Fig. 8
2n
ap = -}r- [ (photocell signal)sin pa da,
6 .
=1 Difcos TV, . cos (82D
P iio( 1) [cos 17~ P7 - €05 73 prl,
2 PT 2 PT
= = (l-cos )} I cos(7+2j) =
- 2 2 12
= %b(l-cos E%acos 2%%-(1+2cos%%1).
Therefore
a, = 7.596/11w,
a12 = -1/,
8,5 = 7.596/13%.

(B1]

(B2]

'AA-““.—-‘




ey

| (11 I«1
! {213 P+ (+0
' (31 ME:Te((XX{IIxXXLIJ)+YY[IIxYY[I1)*.5
[u] >(y>1)Y/ M7
(5] Gezz[I1xeL1 XXUTI,YY(I]
(61 Av1 20 ,0GCxFI
7] PeP+(GL1;1xA0230)-C[2:3xA01:]
[8] LG+ (Gl1;xal1;0)+C025]1xA02:)
[5] MT:+(I=pXX)/PX
' {10) I«I+1
(111 ~x¢
[12] PX:FR4S+(+/5xS5+P,4)*.5
{13] P«P+R4S
[14) QY«ZrR“S
[15) Se+/ 1+Px10¢P
[16] SeS++/ 140x1602
[17] Te+/ 14Ex10P :
[18]) TeT-+/714¢Px16¢
[18) 0y7+(-5),7
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APPENDIX C

Listing of LComputer Programmes

Function QL2

VOUT«&L2:3I:C3A3P; 6351 RMS

v

o ———

s

Use: Calculates Ex and EY for any number of point images defined by the
vector XX, YY and ZZ, where XX(I), YY(I) and ZZ(1) correspond to
the position and intensity of the i'th image.

Calls: QL, QL1




Use:

Calls:
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Function QL1

V6+«QL1 RR;Y;P;Q;COE; TERM; N
Y«QL RR

Peyl[1:]

Qry(2;]

CO+10P[1]xGGe( .5xN+2u4)+(-1+L ,SxTERM)+\TERM+3
Y«(0,Q[11=0)+Y

PeY([1:]
E«$[1])Q((L.5xpP) ,2)pP
Ge+/(21-/0212 1+ ,0Es,.xCC
Gl2;1+G(2;)+C0

Gl1;1«-G[1;]
G+Gto(2,TERN) pGC

v

Determines a;, bi (i = 11, 12, 13) for a given point image

QL1

Called by: QL2
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Function QL

VI«GL Rajhy X3 Z3PyCy &0
Fe(+/KaxEh)*,5
Fi«AK[1)AT40 RRIZ2])
Xe(O08.5x)xd 1 1+4+24
iv{(1,0X)pX
X+Xx,[1)(,pX)p0 1
AT13)+«x{1;1+(02)xP+X(1;1<0
X« (+/P)dx
XC13l«Xx(1;]-(02)xpPex[1;]>02
Y« (-+/F) ¢X

] Ye(O0,((1¥pY)p1),0)\Y

] Y[1;13«0

] Y{1;:;1+pYle0n2

3 Yi2;1)«1-¥(2;:21

] Y([2:314pYle1-Y(2; 1+1vpY]

5] Z«(c.5)-"20#

[16]) pPex[1;]

{17] QeP>2Z

(181 4Lueird

{191 =+(¢<=1)/740

[20] (Qlés-1]«1

[21] Y«g/Y.

[22] Y[1;1)«2

(23] AD:2«(02)-1%

f2u) PeY[1;]

[25) Gebp<l

{(26] ¢ueCr0

[27) +(39>p2)/0

[28] ¢[&dd+«1

[N N e N W W W N N e W Wt Wk W W o
S od b pd = (O NN E WA
EWRN P Dol Lttty

[29) Ye(/Y
(30) Y(1: 1tp¥lez
v

ey g

Use: Determines zero-crossing positions of the photocell waveform for

a given voint image.

Called by: QL1




UNCLASSIFIED

. 45
]
i 4
i
function MP f
VIeMP N3A;J3MO01 ;P01 ‘
(1] MO1«LINE(;2 3] 1
(2] PO1+PIN[;2 3]
(3] I«1
(u] A+ 0

{S) AS:J«I+50
{e] AvA,(MO10I;11+PO1[J;11xN)xM01(I;2)+P01(0J;21xN
(71 +(J=200)/AD

[8] I«I+1

{91 +AS ‘

(10) AD:I«-A :
v

Use: Calculates the data for Figs 15(b), 16(b) and 17(b) from the
matrices LINE and PIN, where LINE contains the values of alZ(XL)
and as(xL) for —1SXLSl, and PIN contains the values of alz(xn)

and as(xp) for —lSXpSl.
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Function ATAN

VZ+«X ATAN Y
(1)  +(1E 6<|X)/U1
(2] X0 _ -
[3) Ul:Z« 30Y+X+1E 7
[4] +(X<0)/YP
(s} +AB
{6} YP:Z+2+01
[7] AB:2+(02)|2Z
[sl +(2<01)/0
(9] 2+2-02

v

Use: Calculates the arctangent and assians to it the appropriate value

dependent on its quadrant.

et T ST 1 N AP )
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